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Abstract Automatically generating adequate responses to ongoing or potential cyber threats and attacks
is a pertinacious challenge and must have the aim to assure mission success, without sacrificing missions
for security. To do so it must be understood how a threat may affect a mission, how a countermeasure
diminishes potential threats, but also how a countermeasure might inadvertently impact the mission as
well. Various approaches exist for all three subproblems and some for a partially combined solution.
However, most suffer from one or more problems: (1) Approaches are holistic, delivering one acclaimed

“optimal,” but intransparent solution. (2) Require unacquirable information that does not account for
missing information, unforeseeable circumstances, or uncertainty. (3) Focus on cost optimization to
mitigate direct affections without considering transitive impacts onto missions. In this paper we propose a
probabilistic approach for cyber defense and assurance, decoupling mission impact assessments of threats
and responses from a generation of those and from an optimal selection of those. We reduce mission
impact assessments to commonly known mathematical problems, obtain directly validated and qualitative
results, and greatly encompass missing information under uncertainty.

1 Introduction

Automatically generating adequate responses to ongoing or potential cyber threats and attacks is a pertinacious
challenge and must have the aim to assure accomplishment of missions, without sacrificing a mission for
security. To do so it must be understood how a threat affects a mission, how a countermeasure diminishes
potential threats, but also how a countermeasure might inadvertently impact a mission as well. For example,
any potential compromise or procured failure of some node inside a network may lead to a causal chain
of unforeseeable events and circumstances allowing an attacker to compromise further nodes until mission
critical devices are affected as well. In order to mitigate these threats, the isolation or deactivation of all
mission critical devices will definitely assure that no mission critical device will be adversarially compromised.
Still, it is obvious that the mission will not succeed anymore.

Various approaches try to address these issues, but suffer from various problems. For example, various
cost-minimizing approaches exist, but the cost of the abovementioned response is extremely low, as only
some plugs need to be pulled. Moreover, various approaches do not encompass for the unknown: by trying to
model exactly how an attacker will operate, e.g., in the form of attack-countermeasure-trees or attack graphs,
any missing attack-step leads to failure of these approaches. We generally characterize frequent problems of
existing approaches into three categories: (1) Approaches are holistic, i.e., try to solve a generation, evaluation
and selection in a closed black-box approach delivering one acclaimed “optimal,” but intransparent solution.
Informally and exaggeratedly said, holistic approaches may only provide information such as “Response
XYZ is best with metric 4589.32,” which does not bear any meaning, requires a holistic reference set of all
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other responses and deep training to vaguely understand it. (2) Require unacquirable information that does
not account for missing information or uncertainty, e.g., require large and complex attack-countermeasure-
trees explicitly identifying each and every possible attack and adequate countermeasures. (3) Focus on cost
optimization to mitigate direct affections without considering transitive impacts onto a mission, i.e., do not
consider unforeseen events and interactions between highly dependent nodes leading to mission failure.

In this paper, we take a fundamentally different perspective: We do not model an attacker, but model a
mission from multiple perspectives as directly described by experts and automatically learned models. This is a
paradigm shift, which allows us to consider all potential transitive and indirect effects from widespread events,
i.e., positive and negative effects of threats and corresponding responses, potentially leading to unforeseeable
chain of events. Moreover, we decouple the processes of generating responses, evaluating their effectiveness,
and selecting an optimal response. Based on a well-defined mathematical problem, one obtains directly
understandable assessments of responses and threats that do not require reference values or training to “judge”
their optimality. Furthermore, we show how these assessments are used for an independent selection of
adequate responses by the use of a multi-dimensional minimization problem, and we show how a mathematical
graph-problem in the probabilistic model is used to generate adequate responses. The decoupling is highly
beneficial, as the selection of an optimal response does not depend on the “correct” generation of response
plans, i.e., obtained qualitative assessment deal as an independent and transparent validation of each response
to assure mission success, and is suited for reporting along a command-chain.

This paper can be summarized as follows: By reducing mission defense onto a mathematical problem in
probabilistic graphical models, one obtains qualitative, directly understandable mission impact assessments
raising situational awareness, neither requiring reference values nor training to understand those assessments.
A probabilistic graphical model is based on directly acquirable information and from automatic analyzes.
By the use of probabilistic inference, transitive and indirect implications onto a mission are considered
from adversarial and self-inflicted perspectives, incorporating unforeseeable chains of events and missing
information.

The remainder of this paper is structured as follows: In Section 2 we introduce a probabilistic mission
impact assessment and show in Section 3 how it is directly applicable for cyber defense assessments. We
demonstrate our approach in Section 4 on real data in a real world scenario. We dedicate Section 5 to a
discussion how a semi-optimal response is selectable by the use of a multi-dimensional minimization and
how commonly known graph theory problems aid to generate novel response plans. We critically discuss our
approach and related work in Section 6 and conclude in Section 7.

2 Probabilistic Mission Impact Assessment

A mission impact assessment (MIA) is used to assess potential impacts of occurring, widespread events onto a
higher goal, e.g., a mission or onto a company. For example, a local impact of a distant node, e.g., a potential
harm caused by a vulnerability, may lead to a causal chain of failures, disclosures and violations inside a
network and will eventually impact critical resources involved directly in a mission. We say that a mission is
impacted transitively by these events. To do so, locally caused impacts are “spread” throughout a network,
even over nodes about which no direct information is available, incorporating unforeseeable chains of events.

Motzek et al. introduces in [1] an approach to probabilistic mission impact assessments based on a
probabilistic graphical model, in which each parameter is directly understandable and validatable locally. By
reducing MIA to a known mathematical problem—probabilistic inference—obtained results are immediately
validated once parameters are validated and, by the use of probabilities, obtained assessments are directly
interpretable without requiring reference results. For example, an obtained assessment states “The probability
that our mission will be impacted by known vulnerabilities inside our network is 37%”—without knowledge
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of the precise probabilistic graphical model, inference procedure or reference results, this statement is directly
understandable and not negligible. We call these understandable and validated results qualitative assessments.

In the following we briefly introduce this probabilistic MIA based on [1], [2], and [3] (Motzek et al.,
further referred to as Motzek), and utilize it to obtain qualitative assessments of attacks and threats under the
consideration of in-place countermeasures and their negatively invoked side-effects.

Motzek considers mission impact assessment from three different perspectives, involving different experts
and expertise. Every expert defines a different dependency model, where every modeled entity represents a
random variable and a dependency between two entities is represented by a local conditional probability of
impact.

Remark 1 (Impact). An abstract term of “impact” is used in the sense of “not operating as fully intended.”
The underlying meaning of “intended operation” lies in the use case of a model. N

2.1 Mission Dependency Model (Business View)

Motzek extends a model by Jakobson [4] and model mission dependencies as shown in Figure 1 as a graph of
mission nodes. For the scope of this work a business perspective is used, where a set of business processes are
highly critical for the success of a company. An adequate analogy is directly evident for missions and their
individual objectives. A company is dependent on its business processes. A business process is dependent on
one or more business functions, which are provided by Business resources. Figure 1 shows a dependency
graph of business relevant objects for a small company consisting of two business processes, requiring a total
of four functions provided by four resources. Every node inside a dependency model represents a random
variable, defined as follows.

BF1 BF2

BP1

CM1

0.70.8

p(+cm1|+bp1) = 0.9

A B

0.9 0.60.1

Figure 1: Mission Dependency Model. Values along edges denote individual conditional probability fragments.

Definition 1 (Random variables). A random variable, denoted as capital X , is assignable to one of its
possible values x ∈ dom(X). Let P (X = x) denote the probability of random variable X having x as a
value. For our case we consider dom(X) = {true, false} and we write +x for the event X = true and ¬x
for X = false. N

The event +x represents that node X is impacted and ¬x that it is operating as intended, i.e., no impact
is present. Dependencies are represented by local conditional probability distributions (CPDs) modeling
probabilities of impact, given dependances are impacted. For example, the probability of business-function
BF1 (see Fig. 1), say, “provide access to customer data”, failing, given required business-resource A, e.g.,
“customer-data-frontend”, fails is 90%. Motzek argues that the meaning of local conditional probabilities
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are understandable using common-sense (e.g., “in 9 out of 10 cases, customer data were not accessible
for employees during frontend-server maintenance”) and that the (numerical) assessment can be directly
validated by either an expert or through ground-truth. For ease of parametrization of complete CPDs, every
edge is associated with an individual local conditional probability of impact, e.g., for the above example
p(+bf1|+a) = 0.9. These probabilities are combined towards one distribution using so-called combination
functions. Following [1], we employ a non-leaky noisy-or combination function in this work as described,
e.g., by Cozman in [5]. Formally, Motzek defines in [2] a mission dependency model therefore as follows.

Definition 2 (Mission Dependency Model). A mission dependency model M is a directed acyclic graph
(DAG) as a pair 〈~V , ~E〉 of vertices ~V and edges ~E. Vertices ~V are random variables (Def. 1) and are
categorized according to their semantic as business-resources ( ~BR), -functions ( ~BF ), -processes ( ~BP ), and
-company (BC). For the scope of this work we consider that a business dependency model is created for
a single BC. The ordering BR ≺ BF ≺ BP ≺ BC represents the strict topological ordering of graph
M . Every edge E ∈ ~E represents a dependency. Let V ∈ ~V , then let ~EV ⊆ ~E be the set of edges directed
to V , and let ~DV be the set of vertices from which ~EV origin, i.e., ~DV is the set of dependencies of V . For
every vertex V ∈ ~V a conditional probability distribution (CPD) P (V | ~DV ) is given, or, alternatively, a
combination function is given for V and edges E ∈ ~EV are associated with conditional probability fragments
s.t. a p(+v|d) is given for all d ∈ dom(D),∀D ∈ ~DV . N

With Definition 2, a mission dependency model represents a probabilistic graphical model, and, in
particular, a Bayesian network, as, e.g., defined by Pearl and Russel in [6]. A key feature of Bayesian networks
is the ability to locally interpret individual parameters, i.e., to locally interpret individual probabilities of
CPDs. These properties are preserved in the presented probabilistic MIA as discussed in [2]. As all parameters
are understandable locally, a mission dependency model is directly designable by an expert. Additionally,
they can automatically be extracted from BPMN models. Further, mission dependency models are seen as
persistent for a company, i.e., must only be designed once initially.

Business resources are part of an infrastructure perspective and—from an operational view—might be
irrelevant, but are identified to be business critical by a business expert. Notwithstanding, such an assessment
might be inaccurate, which is why transitive impacts must be considered. For example, identifying a web-
service as a business critical resource is reasonable, but it can not be expected that an underlying distributed
computing cluster is identified in all extent providing the web-service. The following resource dependency
model covers these dependencies.

2.2 Resource Dependency Model (Operation View)

Critical resources identified in a mission dependency model are dependent on further resources. Likewise, if a
dependent resource is threatened, the identified critical resource might be threatened transitively as well. An
operation expert, unlike a business expert, has an expertise to understand such dependencies, which we cover
in an resource dependency model. The resource dependency model models dependencies between individual
resources, which can be, e.g., individual ICT servers, ICS devices, software components or, in other use cases,
manufacturing robots, suppliers, soldiers or vehicles. A probabilistic approach is followed as before, meaning
that every dependency between two resources represents a local conditional probability of impact, if the
dependence is impacted, as shown in Figure 2. [2] defines a resource dependency model formally as follows.

Definition 3 (Resource Dependency Model). A resource dependency model R is a directed graph as a pair
〈~V , ~E〉 of vertices ~V and edges ~E. Every edge E ∈ ~E, from vertex X ∈ ~V to Y ∈ ~V represents a dependency,
and is associated with a conditional probability fragment p(+y|+x). Vertices ~V are random variables (Def. 1)
and represent resources in an infrastructure, where a subset of vertices semantically correspond to vertices of
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a corresponding mission dependency model M . Let V ∈ ~V , then let ~EV ⊆ ~E be the set of edges directed to
V , and let ~DV be the set of vertices from which ~EV origin, i.e., ~DV is the set of dependencies of V . For every
vertex V ∈ ~V a CPD P (V | ~DV ) is defined by a non-leaky noisy-or combination of all conditional probability
fragments of associated edges in ~EV . V is not contained in ~DV , i.e., a resource V is not dependent on
itself. N

This definition of a resource dependency model is similar to the definition of a mission dependency model
(Def. 2), and does represent a probabilistic graphical model as well, but does not introduce constraints of
acyclicity, i.e., a resource dependency model can contain cyclic dependencies.

Motzek argues that assessing resource dependencies is not manageable by hand. Complex operation
structures render a manual dependency analysis infeasible and error prone. Further, dynamically adjusting
infrastructures (e.g., as found in IT cloud use cases) make it even unknown to an expert to identify exact
dependencies. However, [2] shows that an expert is able to validate a presented infrastructure dependency
model for plausibility. Therefore, [2] presents an automatic learning approach for obtaining resource depen-
dency models automatically from captured communication information, for which we present an example in
Section 4. By incrementally relearning the model, the complete approach automatically adapts to changing
environments.

C

A

B

D

〈t0 : 0.7, t1 : 0.8〉 〈t0 : 0.9, t1 : 0.6〉

BF2 BF1

0.1

0.2 0.
1

0.4
0.1

0.7

0.9
0.5

0.6
0.9

〈t0 : 0.3, t1 : 0.1〉 〈t0 : 0.9, t1 : 0.9〉

Figure 2: Resource Dependency Model. Dependencies between B, C would also be possible. Conditional
probability fragments are marked along the edges. Grey nodes represent external shock events leading to
local impacts. The time-varying conditional probability of local impact given an instantiated external shock
event is given next to the edge and the time-varying shock event’s prior random probability is given below it.
Connections to the mission dependency model are sketched in dashed gray.

2.3 Local Impacts (Security View)

Nodes of a resource dependency model might threatened directly by, so-called, external shock events. A
security expert has the expertise to assess the local consequences on a node, given the presence of an shock
event, e.g., the presence of a vulnerability or a direct shutdown of a node. Informally, an external shock event
(SE) represents a source for an impact and is attached to a node in a resource dependency model, i.e., a SE
threatens a node to be impacted. By representing SEs as random variables, one gains the ability to include
uncertainty about the existence of SEs and uncertainty about whether a present threat leads to an impact on a
node. Formally, Motzek defines external shock events in [2] as follows.

Definition 4 (External Shock Events). An external shock event SE is a random variable and let ~SE be the
set of all known external shock events. An external shock event SE ∈ ~SE might be present (+se) or not be
present (¬se), for which a prior random distribution P (SE) is defined, i.e., SE is a prior random variable.
Every vertex V of a resource dependency model R might be affected by one or more external shock events
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~SEV ⊆ ~SE. In the case that an external shock event is present (SE = +se, SE ∈ ~SEV ), there exists a
probability of it affecting node V , expressed as a local conditional probability fragment p(+v|+se). If an
external shock event exists and it is not inhibited, we speak of a local impact on V . In the case that the external
shock event is not present, i.e., ¬se, it does not affect random variable V and we write p(+v|¬se) = 0. Every
individual conditional probability fragment from an external shock event is treated in the same noisy-or
manner as a dependency towards another node, and thus, multiple shock events can affect one node and one
shock event can affect multiple nodes. N

According to Definition 4, the presence of an external shock event can be known (observed) or can
be unclear and is assessed probabilistically through its prior random distribution P (SE). We denote the
set of observed external shock events (known presence) as a set of instantiations ~seo of observed random
variables ~SEO ⊆ ~SE. This is highly beneficial for applications, where the actual presence of impact-sources
is uncertain (P (SE)), and where evidence of existence and impacts is available, i.e., where SEs are observable
(+se ∈ ~seo). To encompass varying effects over time, Motzek defines a temporal aspects of SEs as follows.

Definition 5 (Temporal Aspects). In an abstract timeslices an effect of an external shock event changes.
Every abstract timeslice represents a duplicate of the network- and mission dependencies with a different
set of local conditional probabilities and prior probabilities of shock events. A time-varying probability is
denoted as a sequence 〈t0 : p0, . . . , tT : pT 〉, with T + 1 abstract timeslices. In every abstract timeslice i,
varying probabilities take their respective conditional or prior probability pi defined for its timeslice ti. N

Note that a security expert does neither need to have any expertise in dependency analyses nor in business
process analyses. An assessment of potential impacts is performed using a local, causal, view on resources
and direct causes as external shock events. An expert initially designs these local consequences or utilizes
flat assumptions, based on which specific external shock events are automatically initialized from obtained
information, as discussed in Section 3.

2.4 Mathematical Mission Impact Assessment

To summarize, one probabilistic graphical model is defined by a mission dependency network, a resource
dependency network and a set of external shock events with associated local impacts threatening nodes (or
random variables) defined by the resource dependency network. As resource nodes are dependent on each
other, a threatened node might again threaten another node, which leads to a global “spreading” of impacts
induced by external shock events. In the end, there exists a probability that even a business process or the
complete modeled company (mission) is threatened transitively by various external shock events, which is
what [2] call the mission impact assessment, defined as follows.

Definition 6 (Mission Impact Assessment, MIA). Given a mission dependency model M , a resource depen-
dency model R and a set of external shock events ~SE, a mission impact assessment of a mission node MN is
defined as the conditional probability of a mission node MN ∈M being impacted (+mn), given all observed
external shock events ~seo, i.e., P (+mn|~seo), where the effects of local impacts due to all ~SE are mapped
globally based on mission-dependency and resource-dependency graphs. Note that ~seo includes present (+se)
and absent (¬se) shock events and that some shock events are unobserved, i.e., are assessed probabilistically
through their prior random distribution P (SE). The task of obtaining P (+mn|~seo) is defined as the MIA
problem. N

To obtain a solution to the MIA problem, one can see the probabilistic model as a probabilistic logic
program, as elaborated in [1, 2, 3], where the MIA problem can be reduced onto a probabilistic inference
problem. As probabilistic inference is generally known to be NP-hard, a approximate inference techniques is
used, and [1] and [2] show and verify a linearly-scaling approximation procedure for obtaining solutions to
MIA problems even in very large scaled domains in the range of seconds.
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A probabilistic MIA P (+mn|~seo) directly originates from all defined dependency-models and repre-
sents an inference problem in a probabilistic graphical model. Therefore, [2] shows that if locally defined
dependency-models are validated to be correct, an obtained impact assessment P (+mn|~seo) is validated, too.

3 Multi Dimensional Probabilistic Mission Defense and Assurance

Probabilistic mission impact assessment delivers context and bias free results as demonstrated by [3] and [2].
This means that no reference values are required for understanding an assessment. Moreover, the use of a
probabilistic graphical model directly allows one to integrate uncertainty into models, e.g., uncertainty over
the existence of vulnerabilities or imprecision of raised alerts. Furthermore, external shock events allow one to
model impacts caused by adversaries, impacts by individual countermeasures, and effects of countermeasures
on threats individually from local perspectives. Therefore the introduced probabilistic approach can directly
be employed for mission defense as discussed in this section.

We differentiate between an adversarial impact (AI), i.e., an impact uncontrollable by one and caused by,
e.g., IDS alerts, vulnerabilities or known threats, and between an operational impact (OI), i.e., a self-inflicted
impact by a set of countermeasure on the mission. Both are differentiated in three temporal dimensions of a
short-term, mid-term and long-term impact. Every source of these impacts is an external shock event. In the
following two examples we discuss how a potential action by an attacker and our response are represented as
external shock events. The key advantage of this approach is that both dimensions are modelable individually,
i.e., not each and every combination of response and attack must be considered on every resource.

Example 1 (Adversarial Impact Shock Events). [2] represents every vulnerability information, e.g., auto-
matically obtained from network scans, as an external shock event V ULN affecting one or more nodes
~X . Respectively, a prior random distribution P (V ULN) and local conditional probability fragments
p(+x|+vuln) is defined. P (V ULN) directly allows one to model uncertainty about the actual existence
of this vulnerability, e.g., through inaccurate scanners, as well as an uncertainty about the exploitability,
e.g., if an exploit is present in common frameworks. The latter probability is likely to vary over time for
which temporal aspects can be used, representing an increasing exploitability-probability over time. Likewise,
p(+x|+vuln) represents the probability that, given this vulnerability is present and exploitable, it does harm
to a node. These parameters are directly extractable from CVSS databases as explained in [2].

Similarly, a raised alert by an IDS is modeled in the same way as a shock event ALER. P (ALER)
represents an accuracy of the IDS, and p(+x|+aler) a probability that, if the alarm is true, a harm is caused,
e.g., a very high probability that an adversarial impact is created, given a true alarm about a gained root
privilege is authored. Naturally, for every alert category a different type of local external shock event may be
modeled, e.g., one for port-scanning, one for dos-attacks and one for gained accesses. For modeling, temporal
aspects can be used to gain awareness about persisting impacts for raised alarms, e.g., a gained root access
will lead to a constantly high impact, given the alarm is true, i.e., p(+x|+root) = 〈t0 : 1.0, t1 : 1.0, t2 : 1.0〉.
Given a present dos-attack, impacts are high in a short- and mid-term, but likely to be low in a longterm, i.e.,
p(+x|+ddos) = 〈t0 : 0.9, t1 : 0.85, t2 : 0〉. �

These external shock events create an adversarial impact (AI), varying over time, “spreading” throughout
a network. For example, a gained root privilege might reveal passwords, useable to gain access on other
nodes, or data is eavesdropped revealing information about dependent nodes. Our approach significantly
different from existing approaches, which utilize, e.g., attack-graphs such as [7, 8]. Attack paths try to address
the problem how exactly an attacker might compromise the network, i.e., they try to simulate an attacker.
In contrary, we raise an amount of situational awareness that provokes an elimination of potential impact
sources. In fact, Motzek shows in [2] that this approach is able to raise awareness for devices in a real world
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scenario that were fully compromised by attackers through ways that were—in our opinion—completely
unforeseeable by any classical “thinking like an attacker” or software-vulnerability focused analysis, e.g.,
were not foreseeable in classical attack graphs.

Naturally, attacks must be mitigated, for which we define a response in the form of a response plan
formally as follows.

Definition 7 (Response Plan). A response plan RP is a vector of mitigation actions, representing individual
actions to be performed as a response to an adversary or threat opposed to an organization. N

For example a response plan consists of multiple mitigation actions instructing the shutdown of some
specific nodes. However, every mitigation action inside a response plans might cause an impact as well—an
operational impact (OI), i.e., represent one or more external shock events aswell. On the other hand mitigation
actions are able to mitigate or reduce adversarial impact probabilities. Probabilistic independencies of external
shock events are used to model this interaction locally, as discussed in the following example.

Example 2 (Operational Impact Shock Events). In the following we discuss three common cases of mitigation
as given by [1]: Employing a patch on a node X may provoke collateral damage, i.e., represents a shock
event PATC. During installation of a patch, there exists a (low) probability of immediate conflict, e.g.,
a flat assumption of 10% or a measure published by the software vendor. In a mean time, a patch might
enforce a reboot of a network device. Finally, after one or more successful reboots and reconfigurations, the
network device will fully resume its operational capability, and a vulnerability on a node (represented by
shock event vuln) will be removed. One models a patching operation in three abstract timeslices and defines
the local impact probabilities of this external shock event to be p(+x|+pat) = 〈t0 : 0.1, t1 : 1.0, t2 : 0.0〉.
From a probabilistic perspective “removing a vulnerability” means that the node becomes independent of the
external shock event: t = 2 : P (X|+patc, vuln, ~Z) = P (X|+patc, ~Z) or t = 2 : X ⊥ vuln|+patc. In the
mid-term (t = 1), a vulnerability might or might not have been removed, which is represented by specifying
P (+x|+patc, +vuln, ~Z) ≤ P (+x|¬patc, +vuln, ~Z) in the local CPD of the affected node X .

A restriction of a connection from node X to node Y , i.e., a new firewall rule, may invoke operational
impact on Y , but prohibits “spreading” of adversarial impacts. From a technical perspective this operation
forbids a transfer of data that might have been crucial for the operational capability of a node Y . As a
connection between two devices resembles a dependency, one must further remove this dependency to prevent
a double counting of impacts. To do so, [1] shows that one transforms a prohibited dependency to an
observed external shock event +se s.t. the local conditional failure probability p(+y|+x) becomes a local
impact probability p(+y|+se). Temporal aspects can be used to model how long such a prohibition is intended
to last. Multiple firewall rules can be used to completely isolate a node from the rest of a network, e.g., for
inspection or repair.

Finally, a node can be shutdown as well, obviously creating operational impact by a shock event SHUT ,
but clearly avoiding all adversarial impacts ~SEAI immediately, i.e., p(+x|+shut) = 〈t0 : 1.0, t1 : 1.0, t2 :
1.0〉 and X ⊥ ~SEAI |+shut. As a deactivated node is unable to communicate, a shutdown directly includes
modeling an isolation. �

This example shows how external shock events are used to model individual mitigation actions and their
individual mitigation of adversarial impacts.

Note that neither interactions between all modeled AI and OI events nor all combinations of mitigation
need be modeled. Only local operational impact effects of individual mitigation actions are modeled and some
specific local effects. As an effect, these local impacts create time-profiles of a “fight” between impacts of
different dimensions. A sketch of these profiles is visualized in Figure 4. Please note that these time-profiles
are only examples of hypothetical effects of the modeled local impacts, i.e., “red” and “blue” are designed
separately, automatically leading to the displayed effects.
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All transitive and global effects of these local events are assessed probabilistically correctly through
inference in the obtained probabilistic graphical model. To be precise, one obtains two (AI/OI) three-
dimensional (i =short-, mid-, long-term) assessments for the mission MI of the mission dependency model
M as PAI

i (+mi|~seo) and POI
i (+mi|~seo), where ~seo is the set of the observed external shock events, e.g.,

exact knowledge of presence of vulnerabilities or the known execution of a mitigation action.
Note that a mission dependency model is only designed once, a resource dependency model is learned

automatically and adapts to changing environments by a periodic re-learning. Local impacts of shock events
are designed directly without a need to understand the complete approach or other dependency models as
demonstrated in Example 1 and 2. Moreover, both examples show that these external shock events are
automatically initialized based on present and automatically acquirable information.

An obtained assessment, e.g., a long-term probability of 90% that an adversary may cause an impact is
directly understandable and does not require a “comparison” with other options—it is clearly not acceptable
and must be mitigated. On the other hand, an operational impact is an impact as well and may lead to the
same consequences as an adversarial impact does, e.g., a long-term probability of 90% that an executed
mitigation may cause an impact on the mission is not acceptable as well. These properties allow the global
mission impact assessment to be a direct assessment for complete defense strategies, decoupling generation
and selection from this evaluation. This means that no holistic approach is taken, but proposals for responses
are integrable from any source and a selection remains transparent and directly understandable for an expert.
In the following section we give a short demonstration of obtained assessments, and show in Section 5 how
a semi-optimal minimization is used to select a best compromise and how such responses are generatable
automatically from the defined models.

1 2 3

1
None

1 2 3

1
Patch

1 2 3

1
Shutdown

1 2 3

1
Isolate

Figure 3: Sketch of local impact time profiles for adversarial impact (AI, red) and operational impact (OI, blue),
while a vulnerability is present and some actions are executed (denoted as title). A vulnerability clearly poses
a threat to a resources from an adversarial perspective (AI) raising over time (x-axis), transitively threatening
other nodes. Patching said vulnerability might cause conflicts when installing, involves a period of uncertainty
while rebooting provoking hardware failures and will eventually have removed the vulnerability (OI). Isolating
for two timeslices provokes no immediate positive effect on the nodes, but prevents other dependent node
from being adversarially impacted (compare Fig. 4). Respectively, the same holds for temporarily isolating and
deactivating a node. There exists a tradeoff “game” between both impact dimensions over time.

4 Use Case Experiment

We evaluate and demonstrate the benefits of a probabilistically sound mission defense in a real world use case
scenario involving real data. As part of the Panoptesec research project, we are able to apply our approach
inside a backup-environment of ARETi, division of Acea SpA, Italy’s largest water services operator and
one of the largest energy distribution companies in Italy [9]. ARETi is a division of Acea SpA in charge
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1 2 3

1
Transitive AI

1 2 3

1
Isolating from AI

Figure 4: Sketch of transitive impact time profile of a node threatened by a vulnerability-impacted distant node
(adversarial impact, red). Isolating this node from the impact source, e.g., for two timeslices, “removes” tran-
sitive AI during that period, but prohibits all potentially required dataflows as well leading to an operational
impact (blue).

of distributing and controlling energy to the city and vicinity of Rome. We detailedly describe a process
of obtaining required mission dependency models and resource dependency models in [2], which were in
fact validated by IT-, security-, and business-experts to the company. A sketch of the obtained probabilistic
graphical model is displayed in Figure 5.

As in our approach the generation, selection and assessment of responses to cyber threats and attacks
is completely decoupled, we demonstrate our approach on intuitive, “hand-crafted” response plans, whose
global effects on the mission are somewhat foreseeable. This allows one to verify our approach in that sense
by the results of the experiment carried out in this section. In the upcoming sections we describe how adequate
response plans are generated automatically and how an expert is assisted in selecting an appropriate one.

For the experiment, we consider the presence of two hypothetical known software vulnerabilities on two
distant nodes1 (Fig. 5, black nodes). The vulnerabilities are designed to lower their access complexity over
time, i.e., a potential impact rises over time. Note that the affected nodes are not mission critical and at least
one “hop” away from mission critical devices. Still, other nodes are highly dependent on them (thick edges),
leading to an immediate spread of impacts. Without considering transitive effects there exists a high chance
that other approaches, solely focusing on direct costs and direct mitigation, sacrifice the mission in favor of
security. Moreover, no “vulnerability-path” exists from these affected nodes to other devices, i.e., purely
software-vulnerability focused analysis would miss the potential impacts of these vulnerabilities.

We propose the following six response plans for demonstration: (1) no response is taken, i.e., only
adversarial impact is present, (2) shutting down all critical devices, i.e., guarantees that no adversarial impact
is posed on the mission, but clearly will sacrifice it, (3) a direct shutdown of affected nodes, i.e., will
eliminate an AI onto a mission directly, but significantly hampers the operation of the network (OI), (4)
all vulnerability-affected nodes are patched, i.e., in a long-term perspectives threats will be eliminated, (5)
patching all vulnerabilities while isolating them from the network until a mid-term time interval, i.e., focuses
on eliminating the threat in the long term and preventing soon malicious activities, and (6) a random choice of
shutting down arbitrary devices.

As evident from Table 1, globally self-inflicted and adversarial-inflicted impacts onto the mission corre-
spond to intuitive assumptions, which are further discussed in Example 3. Note that these assessments are
based on a well-defined probabilistic graphical model and probabilistic inference, where all parameters have
been validated. Therefore, these assessments are seen as validated as well. Moreover, these assessments
stand for their own (qualitative assessments): Probabilities of impacts are not negligible and do not require
reference results to judge their likelihood, and, depending on what is at stake, directly raise situational
awareness for the criticality of the situation and appropriate response. For example, without knowing the
second column (response description) of Table 1, a response plan can be chosen, without knowing reference
values, without knowing all other possible response plan, without a detailed description of all parameters and

1We emphasize that these two vulnerabilities are of completely hypothetical nature and are not present in the environment of Acea
SpA or ARETi.
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5 Generation and Selection of Response Plans

Up to now we have discussed how one obtains understandable and transparent assessments of response plans
from multi dimensional perspectives, considering the mitigation of attack surfaces, as well as potential negative
side-effect of response plans themselves while focusing on the accomplishment of missions. The presented
assessment is completely independent of how these response plans are generated and every assessment can be
interpreted by its own.

Still, given multiple assessments, where one response plan is not clearly dominating, e.g., it is hard to
decide between response plans 4 and 5 from Table 1. Moreover, if some nodes must be isolated, multiple
options exist and it is hard to intuitively decide where specific mitigation actions should be placed to achieve
a desired goal. In the upcoming two subsections we discuss how operators can be assisted in solving both
problems based on a multi dimensional unweighted best compromise and graph theoretical problems.

5.1 Selection of Response Plans

Given multiple sets of response plans, where one response plan is not clearly dominating in all dimensions,
a tradeoff must be found, i.e., what is the best compromise considering all dimensions. We describe in [3]
an approach to select semi-optimal response plans based on an unweighted multi-dimensional optimization.
By doing so one finds the best compromise in all dimensions, i.e., an operator must not come to a biased
interpretation what is preferred, but is assisted in finding a best compromise. Notwithstanding, if an operator
has a bias towards optimizing one dimension, e.g., the goal is to keep the long-term adversarial impact low at
all costs (OI), one can exclude non-preferred dimensions from this optimization.

Both, AI and OI are impact assessments of proposed response plans. Still, due to their nature, an AI and
an OI assessment follow perpendicular perspectives: On the one hand, the less invasive a response plan is, the
less it can potential cause collateral damage. On the other hand, a minimally invasive response plan, will not
significantly reduce the surface for an attack. It is the novel advantage of the proposed approach of being able
to combine both assessments while not being forced to define a preference-metric over them. We believe it
is not practical to find a preference towards one dimension (e.g., to be solely biased towards AI2). Further,
defining a cost function (e.g., biasing by 30% towards OI1 and 70% towards AI2) is not practical as well.

We, therefore, define semi-optimal response plans in [3] as follows.

Definition 8 (Semi-optimal response plans). Let ~RP
d

be a vector of proposed response plans, associated

with a linearly scaled impact assessment of dimension d. Let ṘP
d ⊆ ~RP

d
denote the set of optimal proposed

response plans in terms of dimension d. Let R̂P
d

denote the assessment of the theoretical optimal response
plan and let ŘP

d denote the assessment of the theoretical worst response plan in terms of dimension d. Then,
let ṘP

d
ε ⊆ ~RP

d
represent the set of semi-optimal response plans in terms of dimension d and easing factor

ε ∈ [0, 1] representing the allowed deviation ε of the theoretical response plan range |R̂P
d − ŘP

d| from the

evaluated optimal response plan ṘP
d
. Thus, ṘP

d
0 = ṘP

d
and ṘP

d
1 = ~RP

d
. N

Finding a best compromise among an n-dimensional impact assessment is therefore defined as finding the
smallest semi-optimal set.

Definition 9 (Smallest semi-optimum). Let ~d be the vector of all impact dimensions. Then, the smallest
semi-optimal set of response plans R̊P is the set

R̊P = min
ε

⋂
d∈~d

ṘP
d
ε

 6= ∅
 . N (1)
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As both OI and AI assessments represent absolute metrics, ŘP
OI

= 1 and R̂P
OI

= 0 (likewise for AI).
This procedure assists an expert in deciding on semi-optimal response plan sets in every dimension, without
enforcing a bias towards one explicit dimension. Please note, that by doing so a semi-optimal response plan
with a compromise in some dimensions is chosen, in which some plans might dominate in certain dimensions,
but which is directly evident. This is highly beneficial for applications where response plans must be chosen
where no preference can be made between AI and OI, e.g., highly critical infrastructures, where any impact
of any form must be avoided in any form. The following example demonstrates this approach on Table 1
delivering highly interesting insights to mission defense and situational awareness.

Example 3 (Defending is not always the best solution). By Definition 9 on Table 1 the best option to execute
response plan 1—no action. In response plan 1, “only” a compromise by 75% must be made in long-term AI
from the optimal long-term AI; but OI is optimal in all dimensions. If doing nothing is not an option, the next
semi-optimal set is response plans 1,3,4 and 5, where 5 dominates 3, leaving 1,4, and 5 as possible candidates.
This example greatly shows the huge tradeoff that is often missed when considering a defense: mitigating
the potential attack sources is as worst as doing nothing; only in a long-term perspective an advantage is
obtained, by the potential sacrifice of a mission in, at least, a mid-term perspective. This is exactly what our
approach does—raise awareness for the good and the bad sides of diminishing attack surfaces. �

This example greatly demonstrates the benefits of our approach, i.e., assessments are directly understand-
able, consider transitive effects (no mission critical are devices threatened adversarially), and consider the
negative effects of responses as well in a non-holistic approach.

Another dimension to consider is the workload to execute each response plan: If the monetary cost of
executing mitigation actions is crucial, the minimization can directly include the sum of costs associated with
each mitigation action in a response plan as another dimension.

As assessment and selection are decoupled from generation, both do not require reference values from all
possible response plans. This is highly beneficial for applications, where response plans origin from multiple
sources, such as automatic generations, expert intuitions, or mandated operational procedures. The decoupled
evaluation delivers an independent validation of each proposal without requiring reference results. In the
following section we show how an automatic generation can benefit from the obtained probabilistic graphical
models.

5.2 Generation of Response Plans

In theory, there exists a hypothetical and extremely large, finite set of possible responses. These are built
by considering all potential combinations of mitigations on each and every node. Naturally, it is completely
intractable to evaluate all of them. Fortunately, as we do not follow a holistic approach, evaluating all
is not required, which is a significant advantage compared to some related approaches. In our approach,
as mentioned earlier, only a subset of promising responses must be evaluated. Moreover, the proposal of
“promising” response plan can be based on greedy heuristics and is allowed to produce “false positive,”
i.e., “bad” response plans, as such sub-optimal response plan will be assessed with a high OI and/or AI.
Informally this means that we can generate as much response plans as we want, based on any heuristic, and
the probabilistically correct assessment will remove the bad ones. In the following proposition we propose
such a heuristic.

Proposition 1 (Response Plan Generation). As identified in Example 1 and 2 patching can eliminate vulnera-
bilities in a long term. Let us name the set of external shock events that can be eliminated completely “curable.”
Let ~V be the set of nodes in a resource dependency model R affected by curable shock events. However, not
all AI-causing shock events are directly “curable,” let ~A be the set of nodes in R affected by adversarial shock
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events which are not curable. Then let ~MAP be a set of mitigation actions instructing a patch, i.e., cure, of
every node in ~V . Let ~MASV , ~MASA be sets of mitigation actions instructing a shutdown, i.e., deactivation,
of every node ~V , ~A. Let ~MA

i

IV , ~MA
i

IA be a set of mitigation actions isolating a every node ~A, ~I for up to i
abstract timeslices.

In certain situations, nodes must be isolated, or a “path” must be cut in advance, e.g., by strategically
placed firewall rules. Essentially, every edge in R is a candidate, leading to an infeasible amount of
possibilities. Still, the best choice for an isolation is given directly from a resource dependency model R.
For every edge e ∈ R we define a minimal contribution probability pmin as follows: Let e origin from some
node X ∈ R, then let pmin be the product of all local conditional probability fragments of the shortest path
between X and the mission/company in a mission dependency model M . This follows the idea that if edge e
is prohibited, at least a pmin probability of OI is caused on the mission. Then, let ~MACV , ~MACA be sets of
mitigation actions instructing firewall rules, i.e., connection prohibitions, which separate all critical nodes in
M from directly affected nodes ~V , ~A with an expected low OI. The set of to-be-prohibited edges in ~MACV ,
~MACA is defined by the minimum cut of graph R partitioning all mission nodes MN ∈M from all nodes ~V ,
~A based on pmin.

Every set ~MA and combination of multiple sets then represent possible and promising response plans.
For example, ~MAP and ~MA

2

IV are likely to represent one of the best response plans for proactive removal
of known vulnerabilities, as evaluated in Table 1. Further, ~MACA is likely to represent one of the best
responses to ongoing attacks. If the total number of individual mitigation actions becomes too large, e.g., by
combinations of many ~MA sets, a randomly sampled subset is used, probably delivering valuable response
plans. N

This proposition shows how response plans as sets of mitigation actions are proposed based on a probabilis-
tic graphical model. Every proposed response plan is then evaluated as described above delivering qualitative
results on which a decision can be grounded by relying on the validated parameters in the probabilistic
graphical model. The nomenclature used in this proposition directly shows the broad applicability of the
complete approach also to non-cyber-security related domains, such as healthcare or military applications. In
the discussed example, one obtains 128 response plans by all complete combinations of mitigation action sets.
As evaluated in [1], a single assessment is obtained in the range of milliseconds, allowing for near-realtime
analysis in changing environments, where sets of external shock events quickly change.

6 Discussion and Related Work

Our approach is based on a probabilistic graphical model composed of three sub-models: a mission dependency
model, a resource dependency model and a set of external shock events with associated local impacts. All three
models are designable independently by different experts and incorporate a potential disagreement between
different experts. For example, an identified web-server in a mission dependency model might be operationally
unimportant, as an underlying database server or computational cluster is much more important. Due to an
identified dependency of web-server on the computational cluster or database in the resource dependency
model, both views are directly covered. Nevertheless, a resource dependency model must be learned, for
which we propose an approach, but which may fail if exchanged information amounts do not correspond
to actual information dependencies between devices, for example if enormous amounts of irrelevant data
are transferred for no significant reason. In that particular situation a resource dependency model must be
corrected manually. By periodically relearning the resource dependency model, it adapts to slowly changing
environments and can be used in dynamic environments. If environments are changing rapidly, a differential
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analysis is required, which is subject to future work. Mission dependency models are acquirable directly from
experts, as we show in [2] for the ARETi use case or by automatic analyzes from BPMN models. Given
multiple mission dependency models, one congruent model must be obtained which poses a problem of
semantic normalization and merging, which we deeply discuss in [10].

We admit that the approach and definitions of locally created impacts of external shock events may seem
simplistic and may simplify the complete problem. However, as we show in Section 4 and [2] both approaches
deliver great results in real world use cases. Moreover, the obtained well-defined model and mathematically
grounded approach has significant advantages as we discussed throughout this paper. As identified in the
beginning, a large variety of related work exists, but often suffer from problems of not considering mission
impact relations, negative side-effects of responses, requiring the finely granular modeling of exact attack
paths and only provide intransparent solutions from holistic approaches. In the following we discuss various
approaches, their benefits and drawbacks.

Viduto et al. present in [11] a promising approach to ponder between risks posed by vulnerabilities against
a degree of financial investments for responses using a multi-objective tabu search. However, they only
consider direct impacts on nodes and assume that in the absence of a vulnerability and in the absence of an
exploit no harm may be caused at all. The use of relative metrics does not allow an operator to understand
metrics directly and can only support a holistic approach without a considering mission impact relations and
negative side effects of the proposed responses.

Considering indirect effects and missing information is partially incorporated by Foo et al. in [12] by the
use of “spread” channels in a network. They notably identify that only considering local reactions to raised
alarms is not sufficient and try to maintain subfunctions of provided services. However, a novel propagation
algorithm employed for “spreading” impacts is not mathematically grounded and can solely provide responses
in a holistic approach and only consider implications of proposed responses to a limited extent.

Considering the negative side effects of response plans is considered by Toth et al. in [13] in a similar
approach to ours by modeling dependencies of a network. However, no approaches for automatically
obtaining these dependencies is provided and the use of novel propagation algorithms does not provide a
directly understandable assessment.

Various approaches, e.g., [14, 15, 16] consider attack-countermeasure-trees which provide a mixture of
attack graphs and associated defense actions and show to be scalable in large domains. These works extend
approaches based on attack graphs, such as [17], [18]. Based on attack graphs, [19, 20] consider a novel and
interesting problem of defending cloud-based virtual networks, where virtual instances might compromise
underlying systems. However, all of these approaches are based on an explicit and detailed representation
of all attackers’ paths through a network up to their goal. We believe that it is highly impractical to model
these attack trees manually involving all possible ways an attacker can take, and it is an infeasible process to
constantly adjust these models in dynamic and changing environments. Moreover, an automatic generation
of such attacker models, such as [7, 8, 21] suffer from a significant problem, as they are fully dependent on
knowing all vulnerabilities. In effect, these approaches assume that in the absence of a vulnerability absolutely
no harm may be caused, even if all surrounding nodes are highly compromisable. Exaggeratedly said, these
approaches assure that no threat to a mission exists, even if all nodes in a network are directly compromisable
by vulnerabilities except the mission critical business resources. Furthermore, to the best of our knowledge,
none of these approaches consider the negative side effects of the proposed responses.

Considering the negative side-effects of responses is often only performed by a cost-perspective on the
implementation, i.e., how much money must be spent to implement a response. [22] presents an interesting
and well-formalized approach for situations where too few budget exists to fully implement all mitigation
actions to known attack surfaces. [23] and [24] consider a defender-attacker interaction as strategic games
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and present well-formalized definitions and well-defined problems for winning these games based on a cost
optimization. Other cost-focused approaches are proposed in [24, 16, 25, 11]. However, only considering
the cost of implementation has a significant drawback: as mentioned in the beginning, the cost of shutting
down a highly critical node will certainly eliminate an attack surface and involves almost no costs at all for
implementation. While the local assessment of these costs is easily to perform, assessing their global negative
side-effect costs is a highly pertinacious challenge and impossible to define by an expert manually for every
device. In our approach the complete assessment of global negative side-effects is directly incorporated based
on well-defined mathematical principles.

The degree of employed uncertainty in our approach, e.g., considering vulnerabilities as first-step sources
of impacts and inferring all possible consequences is highly beneficial, as missing information is directly
incorporated, and a situational awareness is still raised if partial “links” in vulnerability-chains are missing.
Moreover, by the use of a well-defined probabilistic graphical model all parameters are directly understandable,
easy to parametrize and can be validated. Therefore, returned results are immediately validated if the
parameters are validated, as the assessment is based on a formally correct probabilistic inference problem.
Often, approaches, e.g., [14] or [25], involve extremely large amounts of parameters which are not directly
understandable and hard to parametrize, requiring a deeply trained expert in an employed framework to do so.
[19] considers a probabilistic approach as well to determine the likelihoods of explicit attack paths. However,
presented probability theory in [19] is not sound and voids fundamental principles of probabilistic inference
in multiply connected graphs, as far as we can tell.

7 Conclusion

In this paper we present a probabilistic approach to mission defense, focusing on the assurance of missions,
without sacrificing them for the sake of security. We consider that locally created impacts, e.g., attacks
may lead to unforeseeable events and spreads of impact throughout a network through ways unforeseeable
in advance by experts. Moreover, we consider that any response to an ongoing or proactively defended
attack surface may impact a mission to the same extend as the attack itself. By reducing the problem onto
a well-defined inference problem in probabilistic graphical models, all parameters are understandable by
themselves, without a need to overlook a big picture and are validatable by individual experts from different
expertise. Based on validated parameters, obtained results, i.e., assessments of adversarial and operational
impacts, are validated as well and directly understandable without requiring reference values for comparison.
With these novel advantages, we decouple assessments from a generation and selection of response plans.
This means that every assessment is acceptable or deniable by itself, no matter where or who proposed
the response by whatever approach. In contrast in a holistic approach, an operator is forced to accept “the
relatively best value” found by some response plan generator, whose assessment does not bare any meaning
and only provides the knowledge that it was somehow superior to others, but the worseness and betterness
remains unknown.

Future work is dedicated to extend the approach to a completely dynamic model allowing for real-time and
forensic analyses in rapidly changing environments based on novel advantages by [26] on artificial intelligence
and probabilistic graphical models as discussed in [2].
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